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1. Introduction

Throughout the paper, we let |¢| < 1 and for positive integer n, we use the
standard notation
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and

oo

(a:q)oe = [ (1 = ag™.

n=0

The well known Rogers-Ramanujan identities are

n2

G(Q)rzi - 14 :

(G Dn (46°)00(0h¢°)

n=0
and
o0 ,n2 +n 1

H(g) =y =

(g )n (6%0°)0(0%07) 0

G(q) and H(q) are known as the Rogers-Ramanujan functions.
On page 236-237 of his lost notebook [7], Ramanujan has given very interesting
forty algebraic identities involving Rogers-Ramanujan functions. For example

H(q)G" (q) — *G(q)H" (q) = 1+ 11¢G°(q) H*(q),

G(¢")H(q) — ¢*°G(q)H(¢"") = 1.

In 1921 Darling [4], proved one of the forty identities in the proceedings of Lon-
don Mathematical society. About the same time Rogers [9], proved ten identities
including the one proved by Darling. Watson [11], proved eight of the forty iden-
tities two of which had been previously established by Rogers. Bressoud proved
in his Ph.D thesis [3], fifteen more from the list of forty identities. Biagioli [2],
proved remaining nine identities from the list of 40 identities of Ramanujan by
using modular forms. Berndt et al [1], have proved all of forty identities in the
spirit of Ramanujan.
The Rogers-Ramanujan continued fraction is

and
_ 1/5@2 1/5 (q;q5)oo(q4§q5)oo
B =) = o )l )
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On page 365 of his lost notebook [7], Ramanujan wrote five identities, which
show the relations between R(q) and five continued fraction R(—q), R(¢*), R(¢?),
R(q*) and R(¢°). He also recorded these identities at scattered places of his
notebook [6]. Rogers [9] found modular equations relating R(q) with R(q"), for
n=2,3,5 and 11, the latter equations is not found in Ramanujan’s work. In [10]
Vasuki and Swamy have established the relation between R(g) and R(q7). Moti-
vated by these in this paper we established the relation between R(q), R(¢*), R(q")
and R(¢?") for n = 7,13 and 17. We close this section recalling certain definitions
and identities which are required to prove our main results.

Ramanujan general theta function is defined as

o0

fl=a,=b)= Y (~1)"a

n=—oo

n(n+1l) n(n—1)
2 2

= (a;ab) oo (b; ab)oo(ab, ab) s,  |abl < 1.
(1.1)
Ramanujan also defines special cases of f(—a, —b) by

o0

6(0) =fla.0) = Y 0" = (3020 ), (1.2)

n=—0oo

_ 3y _ S nlotl) % 1.3
¥(q) = f(g,q") nzzoq T (1.3)
and -
f0) = f—a,~) = Y (~1D"¢"F = (;0)- (1.4)
He also defines
X(=q) = (¢;¢%)oo- (1.5)
For convenience, denote f(—¢") := f,
We require the following identities found in [1, 8],
2
CH@)H(¢*) — HA(@)G(e?) = 2qH () H*(¢*) L2, (16)
GH () H(¢?) + H2(q)G(¢®) = 2G(@)GP(*) L2, (1.7)
5
GV H(?) — G H(gT) = X2 (13)
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GG + ¢*H (g H(g™) = X=9)

X(—¢")

G(*)G(¢") + ¢*H(¢*)H (") = \/ =)

G(¢*)H(q) — ¢°G(q) H(q®*) = \/ X(=a®) _

x(—q)

G(¢'"H(¢*) — ¢°G(*)H(¢')  x(—q)

G()G(*) +q"H(q)H(¢*)  x(—¢'7)

We also require
¢*(—q) _1—4k—k’

) R
¥?(q) _1+k—k‘2
a0 (q®) koo

For a proof see [5].

2. Proof of Theorems
Theorem 2.1. If
z=R(q) and y=R(¢),

then
Py +ay’ +2t—y=0

Proof. From (1.6) and (1.7), it follows that

=

_ R
1 R(q

or

This implies ,
o2y 4wyt 2 —y =0,
This complete the proof.

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.15)

(2.1)

(2.2)
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Theorem 2.2. If
r=R(q),y= RQ(qQ), z = R(q7) and w = RQ(qM),
then

(y— 22w+ 2)3  (—2®y? —day + 1) (2y)(—w?2? + 1)(—w?2? +wz + 1)

(we + 102 (zy +5)°  (=22y? + 1)(—a2y? + 2y + 1) (—w?z? — dwz + 1)(zw)
Proof. From (1.8) and (1.9), it follows that
1+ RiRy4 X3 (—q") \ G2 Gr '

Using (1.13) and (1.14) and raising the power to three on both sides and simplifying,
we obtain

3 i\ 3 5 5
y—z 2w+ - 1 —dzy — 27y Ty
1+ zw xy—i—% 1 — a2y? 1+ zy — 2292

1 — 22w? 14 2w — 22w? _0 (24)
1 —4dzw — 22w? ZWw

This implies,

(y—2)3(zw + £)3 (=2 ey + D (ay) (w2 + D (w2 fwz + 1) 0
(wz 4+ 1)3(xy + %)3 (=222 + 1) (=222 + 2y + 1) (w222 — 4wz + 1) (zw)

This complete the proof.
Theorem 2.3. If

xr=R(q),y = R2(q2), z = R(qlS) and w = RQ(q%),
then

(yz + D2 (zw + %)12
(o~ w)(ay 1 )2
(—w?2? — dw?z + 1) (—w*2? + 1)°(—2%y* — zy* + 1)(25y1?)
(Pw0) (—a?y + 1)°(—w22 4+ 2z + 1)(—2?y* —day? +1)
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Proof. From (1.10) and (1.11), it follows that
(1 + R2R13> <R13R26 + RLQG> _ 2 (—q%) (2.5)

Ry — Ry RiRy + RLQ X*(—¢°)

Using (1.13) and (1.14) and raising the power to twenty four on both sides and
simplifying, we obtain

24 24 5y 2
1+ yz 2w+ = 1 —4zw? — 22wt [ 1 — 22w?
T —w a:y—i—gl! 1+ 2z — 22w 2w?
5y 2
1— oy? — 22y 2y’ o 26
1 —dxy? — 22y* )\ 1 — 2294 '

This implies,
(yz + 1) (zw + )12
(z —w)(zy + ;)"
(w2 —dwtr 4 (w2 + 1) (=2t = ay? + 1)(2%y")
(Pw0) (—22y* + 1)5(—wr2? + 2z + 1) (—22y* — 4ay? + 1)

This complete the proof.
Theorem 2.4. [f
v = R(q),y = R*(¢*),2 = R(¢"") and w=R*g™),

then

(y— 2w+ P

(wo + D2y + 1P

(—2%y? — 4oy + 1) (%" (—w?2? + 1) (—w?2? + wz + 1) (—22y* + 2y? + 1)
(—x?y* + 1)°(20wh) (—22y? + 1) (—2?y? + 2y + 1) (—w?2?2 — 4wz + 1)

y ( (—w?2? 4+ 1)5(—4w’23 + 1) >
(

—22yt —day? + 1) (—wt2? + w?z + 1)

Proof. From (1.12), it follows that

Ry—Riz \ (RurBait 75\ x(=9) x(=¢%) x(=¢*) _ 0 @)
L+ RiRy |\ RiRy + 4 - q ‘
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Using (1.13) and (1.14) and raising the power to twenty four on both sides and
simplifying, we obtain

24 N 2
y—z 2w+ - 1 — 4oy — 2%y? Ty
1+ zw xy + 5 1 — z%y? 1+ 2y — 2%y?
5
1 — 22w? 1+ 2w — 2%w? xy? 1+ ay? — 2%y?
1 —4zw — 22w? 2w 1— a2yt 1 — 4xy? — 2?y?

5

1 — 22w* 1 — 4zw? — 22w*

() (=) o
2W + 2w 24w

This implies,
(y —2)"(zw + )"
24 1y24
(wr + 1)*(zy + )

(—2y? — 4oy + 1) (%) (—w?2? + 1) (—w?2? + wz + 1) (—2y* + 2y? + 1)
(—22y* + 1)5 (20w (—a?y? + 1) (—2?y? + a2y + 1) (—w?2? — 4wz + 1)

" (—w?2? + 1)°(—4w®23 + 1) 0
(—22yt — dzy? + 1) (—w*22 + w2z +1) )

This complete the proof.
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